

- Differential Outputs for $\mathrm{A} / \mathrm{B} / \mathrm{Z}$ Channels
- U/V/W Commutation Outputs (Differential or Open-Collector)
- Operating Temperature of $-20^{\circ}$ to $+105^{\circ} \mathrm{C}$
- 500 to 60,000 Cycles Per Revolution (CPR)
- Powered From a Single +5VDC Power Supply
- Accepts $\pm .005$ " Axial Shaft Play
- Frequency Response from DC up to 1 MHz
- Compatible with . 197" to .394" Shaft Size Diameters
- RoHS Compliant


The ENC-EC35 is an optical commutation encoder designed for OEM motion control applications. The ENC-EC35 requires a minimum shaft length of .500 " and maximum shaft length of .565 ". Suitable for shaft sizes ranging from .197" to .394 " in diameter. This series encoder provides differential outputs for A/B/Z Channels and U/V/W brushless motor commutation. A differential or open-collector output option is available for U/V/W brushless motor commutation. However, single-ended output can be obtained from the ENC-EC35 by using the (+) output for each differential pair. The internal line drivers of this encoder series can either source or sink 20 mA at TTL levels. To achieve maximum noise immunity, the differential receiver can be terminated with a 110 ohm resistor in series with at .0047 uF capacitor placed across each differential pair. The ENC-EC35 is powered from a single +5 VDC power supply and is equipped with a 15-pin connector. Applications making use of hall sensor output on brushless motors for position and speed control can eliminate shifting errors by aligning the U/V/W commutation output of the encoder and the output phases of the motor.

$D=1.28$ " diameter bolt circle mount, \#2-56 x 3/16 screws (qty. 2)
Note: Output must be equal to $D$ when motor poles is equal to 0 .

DM $=1.28^{\prime \prime}$ diameter bolt circle mount, M2.5x5 screws (qty. 2)
$\mathrm{G}=1.812^{\prime \prime}$ diameter bolt circle mount, \#4-40 x 3/16 screws (qty. 2)
$\mathrm{GM}=1.812^{\prime \prime}$ diameter bolt circle mount, M2.5x5 screws (qty.2)

| Pin \# | Wire Color | Differential | Open-Collector | O-Pole Option |
| :---: | :---: | :---: | :---: | :---: |
| 1 | YELLOW | A+ (Quadrature) | A+ (Quadrature) | A+ (Quadrature) |
| 2 | YELLOW/WHT | A- | A- | A- |
| 3 | BLUE | B+ (Quadrature) | B+ (Quadrature) | B+ (Quadrature) |
| 4 | BLUE/WHT | B- | B- | B- |
| 5 | ORANGE | Z+ (Index) | Z+ (Index) | Z+ (Index) |
| 6 | ORANGE/WHT | Z- | Z- | Z- |
| 7 | GREEN | U+ (U Commutation) | U+ (Open-Collector) | No Connection |
| 8 | GREEN/WHT | U- | No Connection | No Connection |
| 9 | BROWN | V+ (V Commutation) | V+ (Open-Collector) | No Connection |
| 10 | BROWN/WHT | V- | No Connection | No Connection |
| 11 | WHITE | W+ (W Commutation) | W+ (Open-Collector) | No Connection |
| 12 | WHITE/GREY | W- | No Connection | No Connection |
| 13 | RED | +5V Power | +5V Power | +5V Power |
| 14 | BLACK | GND | GND | GND |
| 15 | GREY | No Connection | No Connection | No Connection |

*Note: Wire color scheme provided in the table above is for Anaheim Automation's part number: ENC-CBL-CA-E15-SH-NC.

## Timing Diagram:



Rotation as viewed from the top of the encoder: A leads B for CCW rotation, and B leads A for CW rotation.

Motor Poles: 4 (12 States per Revolution)


Motor Poles: 6 (18 States per Revolution)


Motor Poles: 8 (24 States per Revolution)


| Parameter | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| State Width, 4 Pole | 27 | 30 | 33 | Angular Degrees |
| State Width, 6 Pole | 17 | 20 | 23 | Angular Degrees |
| State Width, 8 Pole | 12 | 15 | 18 | Angular Degrees |
| State Width, 10 Pole | 9 | 12 | 15 | Angular Degrees |
| State Width, 12 Pole | 7 | 10 | 13 | Angular Degrees |



| Parameter | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| Supply Current $C P R \leq 2500$, no load, max freq. output CPR > 2500, no load, max freq output | - | 13 37 | 17 44 | mA $m A$ |
| Differential Output Low $\left(I_{\mathrm{OL}}=8 \mathrm{~mA} \max \right)$ | - | - | 0.5 | Volts |
| Differential Output High $\mathrm{I}_{\mathrm{OL}}=-8 \mathrm{~mA} \max$ | 2.5 | 3.5 | - | Volts |
| Differential Rise / Fall Time | - | 100 | - | nS |
| Open-Collector Pullup Voltage | - | - | 30 | V |
| Open-Collector "on" Resistance |  | 0.2 |  | ohm |
| Frequency Response, CPR $\leq 2500$ | - | - | 400 | kHz |
| Frequency Response, CPR $=4000$ or 5000 | - | - | 800 | kHz |
| Frequency Response' $C P R=10,000$ | - | - | 1.00 | MHz |
| Vibration ( 10 Hz to 2 kHz | - | - | 20 | G |
| Shaft Axial Play | - | - | $\pm 0.005$ | in. |
| Acceleration | - | - | 250,000 | $\mathrm{rad} / \mathrm{sec}^{2}$ |
| Maximum RPM, CPR $\leq 2500$ | - | - | $24 \times 10^{6} / \mathrm{CPR}$ | RPM |
| Maximum RPM, CPR $=4000$ | - | - | 12,000 | RPM |
| Maximum RPM, CPR $=10,000$ | - | - | 6,000 | RPM |
| Maximum RPM, CPR $=20,000$ | - | - | 3,000 | RPM |
| Maximum RPM, CPR $=40,000$ | - | - | 1,440 | RPM |
| Maximum RPM, CPR $=60,000$ | - | - | 960 | RPM |
| Temperature | -20 | - | 105 | ${ }^{\circ} \mathrm{C}$ |
| Supply Voltage | 4.5 | 5.5 | - | Volts |
| Load Capacitance | - | 100 | - | pF |


| Terminology | Definition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPR(N): | The Number of Cycles Per Revolution |  |  |  |  |
| One Shaft Rotation: | 360 mechanical degrees, N cycles |  |  |  |  |
| One Electrical Degree ( ${ }^{\circ} \mathrm{e}$ ): | 1/360th of one cycle |  |  |  |  |
| One Cycle (C): | 360 electrical degrees ( ${ }^{\circ} \mathrm{e}$ ). Each cycle can be decoded into 1 or 4 codes, referred to as X1 or X4 resolution multiplication |  |  |  |  |
| Symmetry: | A measure of the relationship between $(\mathrm{X})$ and $(\mathrm{Y})$ in electrical degrees, nominally $180^{\circ} \mathrm{e}$ |  |  |  |  |
| Quadrature: | The phase lag or lead between channels $A$ and $B$ in electrical degrees, nominally $90^{\circ} \mathrm{e}$ |  |  |  |  |
| Index (CH Z): | The Index Output goes high once per revolution, coincident with the low states of channels $A$ and $B$, nominally $1 / 4$ of one cycle $\left(90^{\circ} \mathrm{e}\right)$ |  |  |  |  |
| Timing Characteristics | Symbol | Min | Typ | Max | Units |
| Cycle Error | C | - | 3.0 | 5.5 | ${ }^{\circ} \mathrm{e}$ |
| Symmetry | S1,S2 | 150 | 180 | 210 | ${ }^{\circ} \mathrm{e}$ |
| Quadrature Delay, Q | Q | 45 | 90 | 135 | ${ }^{\circ} \mathrm{e}$ |
| Index Pulse Width, W | W | 45 | 90 | 135 | ${ }^{\circ} \mathrm{e}$ |

## Cables:

The following cables are compatible with Anaheim Automation's ENC-EC35 series encoder. Select a cable length from the table below:

| Cable Part Number | Length |
| :---: | :---: |
| ENC-CBL-CA-E15-SH-NC-1 | 1 ft. |
| ENC-CBL-CA-E15-SH-NC-5 | 5 ft. |
| ENC-CBL-CA-E15-SH-NC-10 | 10 ft |
| ENC-CBL-CA-E15-SH-NC-20 | 20 ft. |

Note: To make your own cable connector please refer to the connector manufacturer JAE.The shell is JAE\# FI-W15S and the pins are JAE\# FI-C3-A1-15000.

## Centering Tools:

Centering tools are optional, but recommended for a more precise installation.


NOTE: For pricing and other information on cables and centering tools, please visit Accessories on our website.

